

Welcome to Laraplans’s documentation!

This library intends to provide a quick starting point to any app that requires SaaS style plans and subscriptions.

	Installation
	Composer

	Service Provider

	Config File and Migrations

	Traits and Contracts

	Usage
	Create a Plan

	Accessing Plan Features

	Create a Subscription

	Subscription resolving

	Subscription’s Ability

	Record Feature Usage

	Reduce Feature Usage

	Clear The Subscription Usage Data

	Check Subscription Status

	Renew a Subscription

	Cancel a Subscription

	Events

	Eloquent Scopes

Installation

Composer

$ composer require gerardojbaez/laraplans

Service Provider

Add Gerardojbaez\Laraplans\LaraplansServiceProvider::class to your application service providers file: config/app.php.

'providers' => [
 /**
 * Third Party Service Providers...
 */
 Gerardojbaez\Laraplans\LaraplansServiceProvider::class,
]

Config File and Migrations

Publish package config file and migrations with the following command:

php artisan vendor:publish --provider="Gerardojbaez\Laraplans\LaraplansServiceProvider"

Then run migrations:

php artisan migrate

Traits and Contracts

Add Gerardojbaez\Laraplans\Traits\PlanSubscriber trait and Gerardojbaez\Laraplans\Contracts\PlanSubscriberInterface contract to your User model.

See the following example:

namespace App\Models;

use Illuminate\Foundation\Auth\User as Authenticatable;
use Gerardojbaez\Laraplans\Contracts\PlanSubscriberInterface;
use Gerardojbaez\Laraplans\Traits\PlanSubscriber;

class User extends Authenticatable implements PlanSubscriberInterface
{
 use PlanSubscriber;

Usage

Create a Plan

use Gerardojbaez\Laraplans\Models\Plan;
use Gerardojbaez\Laraplans\Models\PlanFeature;

$plan = Plan::create([
 'name' => 'Pro',
 'description' => 'Pro plan',
 'price' => 9.99,
 'interval' => 'month',
 'interval_count' => 1,
 'trial_period_days' => 15,
 'sort_order' => 1,
]);

$plan->features()->saveMany([
 new PlanFeature(['code' => 'listings', 'value' => 50, 'sort_order' => 1]),
 new PlanFeature(['code' => 'pictures_per_listing', 'value' => 10, 'sort_order' => 5]),
 new PlanFeature(['code' => 'listing_duration_days', 'value' => 30, 'sort_order' => 10]),
 new PlanFeature(['code' => 'listing_title_bold', 'value' => 'Y', 'sort_order' => 15])
]);

Accessing Plan Features

In some cases you need to access a particular feature in a particular plan, you can accomplish this by using the getFeatureByCode method available in the Plan model.

Example:

$feature = $plan->getFeatureByCode('pictures_per_listing');
$feature->value // Get the feature's value

Create a Subscription

First, retrieve an instance of your subscriber model, which typically will be your user model and an instance of the plan your user is subscribing to. Once you have retrieved the model instance, you may use the newSubscription method (available in PlanSubscriber trait) to create the model’s subscription.

use Auth;
use Gerardojbaez\Laraplans\Models\Plan;

$user = Auth::user();
$plan = Plan::find(1);

$user->newSubscription('main', $plan)->create();

The first argument passed to newSubscription method should be the name of the subscription. If your application offer a single subscription, you might call this main or primary. Subscription’s name is not the Plan’s name, it is an unique subscription identifier. The second argument is the plan instance your user is subscribing to.

Subscription resolving

When you use the subscription() method (i.e., $user->subscription('main')) in the subscribable model to retrieve a subscription, you will receive the latest subscription created of the subscribable and the subscription name. For example, if you subscribe Jane Doe to Free plan, and later to Pro plan, Laraplans will return the subscription with the Pro plan because it is the newest subscription available. If you have a different requirement you may use your own subscription resolver by binding an implementation of Gerardojbaez\Laraplans\Contracts\SubscriptionResolverInterface to the service container [https://laravel.com/docs/5.6/container#introduction]; like so:

/**
 * Register the application services.
 *
 * @return void
 */
public function register()
{
 $this->app->bind(SubscriptionResolverInterface::class, CustomSubscriptionResolver::class);
}

Subscription’s Ability

There are multiple ways to determine the usage and ability of a particular feature in the user’s subscription, the most common one is canUse:

The canUse method returns true or false depending on multiple factors:

	Feature is enabled

	Feature value isn’t 0.

	Or feature has remaining uses available

$user->subscription('main')->ability()->canUse('listings');

There are other ways to determine the ability of a subscription:

	enabled: returns true when the value of the feature is a positive word listed in the config file.

	consumed: returns how many times the user has used a particular feature.

	remainings: returns available uses for a particular feature.

	value: returns the feature value.

All methods share the same signature: $user->subscription('main')->ability()->consumed('listings');.

Record Feature Usage

In order to efectively use the ability methods you will need to keep track of every usage of usage based features. You may use the record method available through the user subscriptionUsage() method:

The record method accepts 3 parameters: the first one is the feature’s code, the second one is the quantity of uses to add (default is 1), and the third one indicates if the usage should be incremented (true: default behavior) or overriden (false).

See the following example:

// Increment by 2
$user->subscriptionUsage('main')->record('listings', 2);

// Override with 9
$user->subscriptionUsage('main')->record('listings', 9, false);

Reduce Feature Usage

Reducing the feature usage is almost the same as incrementing it. In this case we only substract a given quantity (default is 1) to the actual usage:

// Reduce by 1
$user->subscriptionUsage('main')->reduce('listings');

// Reduce by 2
$user->subscriptionUsage('main')->reduce('listings', 2);

Clear The Subscription Usage Data

In some cases you will need to clear all usages in a particular user subscription, you can accomplish this by using the clear method:

$user->subscriptionUsage('main')->clear();

Check Subscription Status

For a subscription to be considered active the subscription must have an active trial or subscription’s ends_at is in the future.

$user->subscribed('main');
$user->subscribed('main', $planId); // Check if subscription is active AND using a particular plan

Alternatively, you can use the following methods available in the subscription model:

$user->subscription('main')->isActive();
$user->subscription('main')->isCanceled();
$user->subscription('main')->isCanceledImmediately();
$user->subscription('main')->isEnded();
$user->subscription('main')->onTrial();

Caution

Canceled subscriptions with an active trial or ends_at in the future are considered active.

Renew a Subscription

To renew a subscription you may use the renew method available in the subscription model. This will set a new ends_at date based on the selected plan and will clear the usage data of the subscription.

$user->subscription('main')->renew();

Caution

Canceled subscriptions with an ended period can’t be renewed.

Gerardojbaez\Laraplans\Events\SubscriptionRenewed event is fired when a subscription is renewed using the renew method.

Cancel a Subscription

To cancel a subscription, simply use the cancel method on the user’s subscription:

$user->subscription('main')->cancel();

By default, the subscription will remain active until the period ends. Pass true to immediately cancel a subscription.

$user->subscription('main')->cancel(true);

Events

The following are the events fired by the package:

	Gerardojbaez\Laraplans\Events\SubscriptionCreated: Fired when a subscription is created.

	Gerardojbaez\Laraplans\Events\SubscriptionRenewed: Fired when a subscription is renewed using the renew() method.

	Gerardojbaez\Laraplans\Events\SubscriptionCanceled: Fired when a subscription is canceled using the cancel() method.

	Gerardojbaez\Laraplans\Events\SubscriptionPlanChanged: Fired when a subscription’s plan is changed; it will be fired once the PlanSubscription model is saved. Plan change is determined by comparing the original and current value of plan_id.

Eloquent Scopes

use Gerardojbaez\Laraplans\Models\PlanSubscription;

// Get subscriptions by plan:
$subscriptions = PlanSubscription::byPlan($plan_id)->get();

// Get subscription by user:
$subscription = PlanSubscription::byUser($user_id)->first();

// Get subscriptions with trial ending in 3 days:
$subscriptions = PlanSubscription::findEndingTrial(3)->get();

// Get subscriptions with ended trial:
$subscriptions = PlanSubscription::findEndedTrial()->get();

// Get subscriptions with period ending in 3 days:
$subscriptions = PlanSubscription::findEndingPeriod(3)->get();

// Get subscriptions with ended period:
$subscriptions = PlanSubscription::findEndedPeriod()->get();

// Exclude subscriptions which are canceled:
$subscriptions = PlanSubscription::excludeCanceled()->get();

// Exclude subscriptions which are immediately canceled:
$subscriptions = PlanSubscription::scopeExcludeImmediatelyCanceled()->get();

Index

Configurations

You can configure what models to use, list of positive words and the list of features your app and your plans will use.

Definitions:
- Positive Words: Used to tell if a particular feature is enabled. E.g., if the feature listing_title_bold has the value Y (Y is one of the positive words) then, that means it’s enabled.
- Features: List of features that your app and plans use.

Take a look to the config/laraplans.php config file for more details.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Laraplans’s documentation!

 		
 Installation

 		
 Composer

 		
 Service Provider

 		
 Config File and Migrations

 		
 Traits and Contracts

 		
 Usage

 		
 Create a Plan

 		
 Accessing Plan Features

 		
 Create a Subscription

 		
 Subscription resolving

 		
 Subscription’s Ability

 		
 Record Feature Usage

 		
 Reduce Feature Usage

 		
 Clear The Subscription Usage Data

 		
 Check Subscription Status

 		
 Renew a Subscription

 		
 Cancel a Subscription

 		
 Events

 		
 Eloquent Scopes

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

